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Bethe lattices in hyperbolic space
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A recently suggested geometrical embedding of Bethe-type lattices (branched polymers) in the
hyperbolic plane is shown to be only a special case of a whole continuum of possible realizations
that preserve some of the symmetries of the Bethe lattice. The properties of such embeddings are
investigated and relations to Farey trees, devil’s staircases, and Apollonian tiling are pointed out.
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I. INTRODUCTION

The term “Bethe lattice” is used for a family of regular
tree graphs, where every node is connected to a fixed
number of neighboring nodes, and no loops are present.
It has been used as an artificial backbone in several areas
of physics, providing for solvable models due to the high
degree of symmetry and the absence of loops.

The symmetry of a Bethe lattice is considerable—all
pairs of nodes with a fixed topological separation (the
number of links in the connecting path) are equivalent.
This implies, in particular, homogeneity (all nodes are
equivalent) and isotropy (for every node, all its neighbors
are equivalent). A Bethe lattice cannot be embedded in
a finite-dimensional Euclidean space without much of the
symmetry being broken.

A more suitable manifold for this purpose is offered by
hyperbolic spaces of constant negative curvature, where
indeed Bethe lattices can be embedded while preserving
homogeneity and isotropy. A recipe for the embedding of
a Bethe lattice in the hyperbolic (Lobachevsky) plane has
been suggested in several papers, see, e.g., Refs. [1] and
[2]. As will be shown in this paper, that particular em-
bedding is a limiting case of a continuum of inequivalent
embeddings, differing in the induced metric properties of
the tree.

II. REGULAR GRAPHS

Regular (homogeneous and isotropic) graphs in two di-
mensions are labeled by the Schlafli symbol {k, [}, where
the integers k,l > 2 give the size of the elementary loops
and the coordination number of a node, respectively.
Only for (k — 2)(! —2) = 4 can the graph be embed-
ded in the Euclidean plane. The only possibilities are
{3,6}, {4,4}, and {6, 3}, corresponding to the triangular
lattice, the square lattice, and the hexagonal honeycomb,
respectively.

For (k — 2)(I — 2) < 4, the graph can be embedded
on the sphere—this gives the familiar five Platonic poly-
hedra. Thus, e.g., {4,3} denotes a cube, and {3,4} an
octahedron, etc.
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For (k — 2)(! — 2) > 4, one must utilize the hyperbolic
plane. Assuming a unit negative curvature, the geodesic
link length d is given by

cos(m/k)

COSh(d/2) = —S-m-/‘l—)'

(1)

III. REGULAR TREES

Increasing the topological loop length k for a fixed co-
ordination number [ leads to the graph gradually opening
up: cos(m/k) increases, which leads to an increase in d.
In the limit as k becomes infinite, the loops become infi-
nite and fail to remain loops. The graph is on the verge
of turning into a tree—this case will be referred to as
a critical tree, and will be denoted by {o0,!}. It has a
critical link length, d., given by

3 + cos(2m/l)

COSh dc = W/T) .

(2)

This limiting case, {o0,}, was suggested in Refs. [1],[2]
as a geometric realization of the Bethe lattice.

It is, however, possible to further open up the graph
in a continuous way beyond k = oo. This demands a
formally imaginary k, such that cos(m/k) > 1. This leads
to a supercritical tree with a link length above the critical
link length d.. Thus, there is a whole family of possible
embeddings with identical topology and symmetry; they
will be denoted by the symbol {x,l}, where the * is a
place holder for an imaginary (or infinite) .

In order to depict such trees, a compact representation
of the hyperbolic plane is needed. This is acquired by a
conformal mapping to the Poincaré disk: i.e., the interior
of the unit circle, equipped with the metric

dr? 4 r2d¢?

2

=42 T 7

ds T —r22
where r, ¢ are polar coordinates.

In Fig. 1, a few (critical and supercritical) {x, 3} trees
are shown, using the Poincaré-disk representation. No-

r<l (3)
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FIG. 1. A critical and two supercritical {x,3} trees. The
values of coshd are (a) £, (b) 2, and (c) 3, respectively.

tice how an increase in link length is accompanied by an
opening up of the tree.

In the case of the critical {*,3} tree, every point on
the boundary of the Poincaré disk will be approached
by some part of the tree. With a suitable mapping of
the boundary to the real line, the tree organizes the
real numbers according to their continued-fraction ex-
pansions, corresponding to a Farey-tree organization of
the rational numbers [3], associated with the nodes of the
dual graph {3,00}. In contrast, for a supercritical tree,
the boundary points that are approached by the tree will
define a fractal, Cantor-like subset of the boundary, with
a finite gap for every rational number, reminiscent of the
devil’s staircase for the phenomenon of rational mode
locking in circle maps [3]. The connection between the
{x, 3} trees and the Farey organization of the rationals is

due to a common symmetry group —the modular group
SL(2,Z).

IV. GEOMETRY

The computation of internode distances can be done
recursively. For the hyperbolic cosine c¢; of the distance
from node ¢ to a fixed node, there are simple linear rela-
tions. Thus, for the {*,3} tree, we have, for a sequence
of four consecutive nearest neighbors,

3
c1 —Acy+Acz —c4 =0, A= ——COS};& (cis) (4)
¢y —Bcyg — Beg+¢4=0, B= @21-1 (trans)
(5)

where “cis” and “trans” refer to whether the two consec-
utive turns are in the same or opposite direction, respec-
tively (see Fig. 2). The relations (4 and 5) derive from
the fact that to every node can be associated a timelike
unit vector in the Minkowski space M3, such that the
scalar product between two vectors equals the hyperbolic
cosine of the corresponding node distance. This defines
an embedding in Minkowski space, restricted to the unit
mass shell, analogous to the embedding of regular poly-
hedra in Euclidean space, restricted to the unit sphere.

(a) (b)

FIG. 2. (a) A “cis” and (b) a “trans” sequence of nodes.
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The vectors themselves satisfy the linear relations above;
hence, so do their scalar products with a fixed vector
[4]. The geometric distances dp for topological distance
D =0,1,2,3 are given by

coshdp =1, (6)
coshd; = C = coshd, (7
coshd; = %(3(72 - 1), (8)

$(9C3 —3C2 —5C +3) (cis),
coshdz = 9)
%(903 +3C? ~5C —3) (trans).

Any other distance is obtained by recursively applying
Eqs. (4) and (5).

By similar means, the geometry of other two-
dimensional trees (I=4, 5, etc.) can be derived. A generic
feature of this kind of embedding is that, although ho-
mogeneity and isotropy are preserved, the internode dis-
tance is not a function of topological distance only. Thus
the geometric embedding of the Bethe lattice is accom-
panied by the breaking of the full (topological) symmetry
group down to a subgroup, defining the geometrical sym-
metry group.

However, the symmetry is restored in the limit of a
large link length (or, equivalently, a large curvature),
where the interlink distance becomes proportional to the
topological distance.

V. HIGHER DIMENSIONS

Analogous constructions exist in higher dimensions.
Thus, in three dimensions a regular structure is denoted
by a Schlafli symbol with three integers {k,{,m}, where
{k,1} determines the hyper faces, and {l, m} the arrange-
ment of neighbors around a node (see, e.g., Ref. [4] for
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details). As in two dimensions, a critical {*,1,m} tree is
obtained as k — oo, and supercritical trees are obtained
by further increasing the nearest-neighbor distance.

The simplest three-dimensional tree is given by
{*, 3, 3}; then every node has four neighbors, tetrahedri-
cally arranged. This is the obvious generalization of the
two-dimensional {*,3} tree, and it gives the most sym-
metric embedding of a Bethe lattice of coordination num-
ber 4 in a finite-dimensional manifold. This embedding
is preferable to the two-dimensional embedding {x,4},
where nearest neighbors are arranged in a square, and
the symmetry is lower.

When depicted in the Poincaré “ball” (which is the
three-dimensional analogue of the Poincaré disk) the
critical {*,3,3} tree approaches a fractal subset of the
boundary. The complement of this subset consists of cir-
cular disks that tile the surface of the sphere (Apollonian
tiling [4]). As in two dimensions, there exist linear recur-
sion relations for the computation of internode distances,
although they relate a sequence of five, rather than four,
consecutive nodes.

The process can be generalized to Bethe lattices of ar-
bitrary coordination number N, for which a highly sym-
metric embedding can be done in (N — 1)-dimensional
hyperbolic space. The neighbors of a node then will be
arranged to form a regular N-simplex, {3,3,...,3}, and
the corresponding family of trees is {*,3,3,...,3}.

VI. CONCLUSIONS

In conclusion, I have shown that the embedding of a
Bethe lattice as a regular tree in hyperbolic space is not
unique. Even when demanding maximal symmetry, there
is (at least) a one-parameter family of possible inequiv-
alent embeddings, of which the critical one is a limiting
case. Thus, any conclusion based on the critical embed-
ding alone is bound to be nonuniversal.

The induced geometry of an embedding of the dis-
cussed type can be obtained by linear recursive methods.
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